skip to main content


Search for: All records

Creators/Authors contains: "Khotyaintsev, Y."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Context. Solar Orbiter, the new-generation mission dedicated to solar and heliospheric exploration, was successfully launched on February 10, 2020, 04:03 UTC from Cape Canaveral. During its first perihelion passage in June 2020, two successive interplanetary coronal mass ejections (ICMEs), propagating along the heliospheric current sheet (HCS), impacted the spacecraft. Aims. This paper addresses the investigation of the ICMEs encountered by Solar Orbiter on June 7−8, 2020, from both an observational and a modeling perspective. The aim is to provide a full description of those events, their mutual interaction, and their coupling with the ambient solar wind and the HCS. Methods. Data acquired by the MAG magnetometer, the Energetic Particle Detector suite, and the Radio and Plasma Waves instrument are used to provide information on the ICMEs’ magnetic topology configuration, their magnetic connectivity to the Sun, and insights into the heliospheric plasma environment where they travel, respectively. On the modeling side, the Heliospheric Upwind eXtrapolation model, the 3D COronal Rope Ejection technique, and the EUropean Heliospheric FORecasting Information Asset (EUHFORIA) tool are used to complement Solar Orbiter observations of the ambient solar wind and ICMEs, and to simulate the evolution and interaction of the ejecta in the inner heliosphere, respectively. Results. Both data analysis and numerical simulations indicate that the passage of two distinct, dynamically and magnetically interacting (via magnetic reconnection processes) ICMEs at Solar Orbiter is a possible scenario, supported by the numerous similarities between EUHFORIA time series at Solar Orbiter and Solar Orbiter data. Conclusions. The combination of in situ measurements and numerical simulations (together with remote sensing observations of the corona and inner heliosphere) will significantly lead to a deeper understanding of the physical processes occurring during the CME-CME interaction. 
    more » « less
  2. Abstract

    We present a statistical analysis of >2,100 bipolar electrostatic solitary waves (ESWs) collected from 10 quasi‐perpendicular Earth's bow shock crossings by Magnetospheric Multiscale spacecraft. We developed and implemented a correction procedure for reconstruction of actual electric fields, velocities, and other properties of ESW, whose spatial scales are typically comparable with or smaller than spatial distance between voltage‐sensitive probes. We found that more than 95% of the ESW are of negative polarity with amplitudes typically below a few Volts and 0.1Te(5–30 V or 0.1–0.3Tefor a few percent of ESW), spatial scales of 10–100 m orλD–10λD, and velocities from a few tens to a few hundred km/s that is on the order of local ion‐acoustic speed. The spatial scales of ESW are correlated with local Debye lengthλD. The ESW have electric fields generally oblique to magnetic field and they propagate highly oblique to shock normalN; more than 80% of ESW propagate within 30° of the shock planeLM. In the shock plane, ESW typically propagates within a few tens of degrees of local magnetic field projectionBLMand preferentially opposite toN × BLM. We argue that the ESW of negative polarity are ion holes produced by ion‐ion streaming instabilities. We estimate ion hole lifetimes to be 10–100 ms, or 1–10 km in terms of traveling distance. The revealed statistical properties will be useful for quantitative studies of electron thermalization in the Earth's bow shock.

     
    more » « less
  3. Abstract

    We report the observation of solar wind‐magnetosphere‐ionosphere interactions using a series of flux transfer events (FTEs) observed by Magnetospheric MultiScale (MMS) mission located near the dayside magnetopause on 18 December 2017. The FTEs were observed to propagate duskward and either southward or slightly northward, as predicted under duskward and southward interplanetary magnetic field (IMF). The Cooling model also predicted a significant dawnward propagation of northward‐moving FTEs. Near the MMS footprint, a series of poleward‐moving auroral forms (PMAFs) occurred almost simultaneously with those FTEs. They propagated poleward and westward, consistent with the modeled FTE propagation. The intervals between FTEs, relatively consistent with those between PMAFs, strongly suggest a one‐to‐one correspondence between the dayside transients and ionospheric responses. The FTEs embedded in continuous reconnection observed by MMS and corresponding PMAFs individually occurred during persistent auroral activity recorded by an all‐sky imager strongly indicate that those FTEs/PMAFs resulted from the temporal modulation of the reconnection rate during continuous reconnection. With the decay of the PMAFs associated with the FTEs, patch‐like plasma density enhancements were detected to form and propagate poleward and then dawnward. Propagation to the dawn was also suggested by the Super Dual Auroral Radar Network (SuperDARN) convection and Global Positioning System (GPS) total electron content data. We relate the temporal variation of the driving solar‐wind and magnetospheric mechanism to that of the high‐latitude and polar ionospheric responses and estimate the response time.

     
    more » « less
  4. Abstract

    On 5 May 2017, MMS observed a crater‐type flux rope on the dawnside tailward magnetopause with fluctuations. The boundary‐normal analysis shows that the fluctuations can be attributed to nonlinear Kelvin‐Helmholtz (KH) waves. Reconnection signatures such as flow reversals and Joule dissipation were identified at the leading and trailing edges of the flux rope. In particular, strong northward electron jets observed at the trailing edge indicated midlatitude reconnection associated with the 3‐D structure of the KH vortex. The scale size of the flux rope, together with reconnection signatures, strongly supports the interpretation that the flux rope was generated locally by KH vortex‐induced reconnection. The center of the flux rope also displayed signatures of guide‐field reconnection (out‐of‐plane electron jets, parallel electron heating, and Joule dissipation). These signatures indicate that an interface between two interlinked flux tubes was undergoing interaction, causing a local magnetic depression, resulting in an M‐shaped crater flux rope, as supported by reconstruction.

     
    more » « less
  5. Abstract

    While vorticity defined as the curl of the velocity has been broadly used in fluid and plasma physics, this quantity has been underutilized in space physics due to low time resolution observations. We report Magnetospheric Multiscale (MMS) observations of enhanced electron vorticity in the vicinity of the electron diffusion region of magnetic reconnection. On 11 July 2017 MMS traversed the magnetotail current sheet, observing tailward‐to‐earthward outflow reversal, current‐carrying electron jets in the direction along the electron meandering motion or out‐of‐plane direction, agyrotropic electron distribution functions, and dissipative signatures. At the edge of the electron jets, the electron vorticity increased with magnitudes greater than the electron gyrofrequency. The out‐of‐plane velocity shear along distance from the current sheet leads to the enhanced vorticity. This, in turn, contributes to the magnetic field perturbations observed by MMS. These observations indicate that electron vorticity can act as a proxy for delineating the electron diffusion region of magnetic reconnection.

     
    more » « less